A maximum entropy model for parsing
نویسندگان
چکیده
منابع مشابه
Reducing Parsing Complexity by Intra-Sentence Segmentation based on Maximum Entropy Model
Long sentence analysis has been a critical problem because of high complexity. This paper addresses the reduction of parsing complexity by intra-sentence segmentation, and presents maximum entropy model for determining segmentation positions. The model features lexical contexts of segmentation positions, giving a probability to each potential position. Segmentation coverage and accuracy of the ...
متن کاملReduction of Maximum Entropy Models to Hidden Markov Models
Maximum Entropy (maxent) models are an attractive formalism for statistical models of many types and have been used for a number of purposes, including language modeling (Rosenfeld 1994), part of speech tagging (Ratnaparkhi 1996), prepositional phrase attachment (Ratnaparkhi 1998), sentence breaking (Reynar and Ratnaparkhi 1997) and parsing (Ratnaparkhi 1997). Maxent models allow the combinatio...
متن کاملA Shallow Discourse Parsing System Based On Maximum Entropy Model
This paper describes our system for Shallow Discourse Parsing the CoNLL 2015 Shared Task. We regard this as a classification task and build a cascaded system based on Maximum Entropy to identify the discourse connective, the spans of two arguments and the sense of the discourse connective. We trained the cascaded models with a variety of features such as lexical and syntactic features. We also ...
متن کاملAn improved joint model: POS tagging and dependency parsing
Dependency parsing is a way of syntactic parsing and a natural language that automatically analyzes the dependency structure of sentences, and the input for each sentence creates a dependency graph. Part-Of-Speech (POS) tagging is a prerequisite for dependency parsing. Generally, dependency parsers do the POS tagging task along with dependency parsing in a pipeline mode. Unfortunately, in pipel...
متن کاملA model of syntactic disambiguation based on lexicalized grammars
This paper presents a new approach to syntactic disambiguation based on lexicalized grammars. While existing disambiguation models decompose the probability of parsing results into that of primitive dependencies of two words, our model selects the most probable parsing result from a set of candidates allowed by a lexicalized grammar. Since parsing results given by the lexicalized grammar cannot...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1994